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A '.., .. ,,-,,,nal iolcular-dvnamics model of a chemicallv-sustained shock wave in a molecular solid is dis
A. , ody expression that realistically describes chemical bonding in condensed phases is used for the!iat:nt,,no, ,,nil. The results demonstrate that simple reactive collisions are sufficient to self-sustain a shock

wave with a velocity that is comparable to experimental detonation velocities. Features characteristic of macroscopic
detonations such as an intrinsic detonation velocity and a following flow are observed on a microscopic scale.

I. INTRODUCTION wide and a high density reaction region where much of
the molecular nature of the solid is lost.

Molecular dynamics (MD) simulation has proven to
be an excellent method for studying atomic-scale reac- If MODEL
tion dynamics in a of variety systems. For this technique
to be of use, howe'er, the system to be studied should Tersoff has recently introduced a simple analytic ex-
be restricted to atomric dimensions and short timescales pression that realistically describes bonding in covalently-
(up to nanoseconds), and an adequate potential energy bonded solids.4 Encouraged by this work (and additional
surface should be used. Nonreactive shocks provide ideal extensions of this approach to few-body reactions'), wephenomena to be studied using MD techniques; the re- have adapted a simplified form of the Tersoff expression
suits of NiD studies using Lennard-Jones potentials have to model an energetic molecular solid. In this approach
compared very well to macroscopic models,' suggesting the binding energy is written in a form similar to a pair
that shock waves in liquids and solids can be well de- potential:
scribod on an atomic scale. Detonating solids, however,
require some form of energy release to self-sustain the Eb , Z f0 (rj) - [VR(r,,) - Bj" VB(ri,)
shock wave. and so Lennard-Jones potentials are gen- 'A>
crally inadequate. Furthermore, to realistically model
chemical energy release the forces should be many-body -(1 - B.j)" VNB(ri). (1)
in nature since the reactivity of a given atom depends on The functions VR(r), VB(r) and VNB(r) represent repul-its bonding to surrounding atoms. Analytic expressions sive, attractive bonding, and nonbonding pair-additive
that realistically describe changes in chemical bonding in interactions, respectively, rij is the scalar distance be-
the solid state have only recently been introduced, and tween atoms i and j, and f,(r) is a function that re-
with few exceptions2 have been restricted to metals and stricts the range of the potential. The many-body aspect
semiconductors.3  

of the potential enters through Bi which weakens the
pair-additive bonding term (and hence the bond energy)

In this work we present a two-dimensional micro- between atoms i and j as the local coordination of the
scopic model for a detonating molecular solid that is atoms increases. For our model it is also used to modu-
based on the many-body Tersoff covalent bonding for- late the nonbronded interactions
malism. 4 The simulations demonstrate that macroscopic i
features of detonating solids such as an intrinsic detona- Following Tersoff, the function 9,, is given by
tion velocity and a following flow are apparent on the
microscopic level. The simulations display a detonation Bj = (B i + Bj)/2 (2a)
front that is on the order of a few atomic dimensions
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are used for tle repulsive and attractive bon(lilg pair The shocks were initiated by silikiug a tWO (Ilil! iC

intelactiois, the liOlllC(l(-d pair term is sional crystal with a simulated flyer plate that was coum-

posed of the same material as the illitial crystal. 1 eriod I

Ixi\ ,' ) -- " . -.A (5) L0,an;.laries 'ere rnaintaillw, i IO, [ L ,el, Ih l pc'll l , 1i
and lar to the shock Shown in lis. ]Ia aid lb ale sinapt.t-

<r) ib from a simulation where the flyer plate was given all ini-

r < DI tia; velocity of 5 kii C it, ath . 1 t ,c ,-

. be identified by a distortion of tie crystal structure. At
S(r C -(r- D, /2, D, < r < D2  about 10 A behind the plate-induced shock front some Uf

f-r + () ) rthe molecules have collided and begun reacting. Fig. lb

0. r > D2. shows the system after S ps. At this point the initial

(6) shock caused by the flyer plate ha-, diminished, while the

Eqs. 1-6, while maintaining the simplicity of a pair chemically-sustained shock continues to propagate. A

potential, incorporate general bonding concepts. In the hot gas consisting mostly of product molecules and a few

limit of isolated diatomic molecules each Bij equals one free atoms and reactant molecules is visible expanding

ald EIq. 1 reduces to a sum of morse functions. As out the back of the shock at the left of Figs. la and lb.

atomic coordination increases, the pair additive bond and a high density region separating the gas from the

strengths decrease and the equilibrium distances increase shock front is visible in the center of Fig. lb.

in a way that yields the Pauling bond order relationship.4  The velocities of the front edge of chemically-sustain-

Since the functional forms are relatively simple, this ap-

proach is efficient for modeling the simultaneous reaction shcvuti e ae gin ig o two desimulations. The dotted line is from the simulation (de-
of many molecules, such as occurs in a condensed-phase scribed above and the solid line is from a simulation that

detonation.th oldlieisfomasiuato ta
detonation. used an impact plate velocity of 10 km/sec. In the latter

Rather than try to describe one particular system, we case the chemical reactions began at the plate-solid ill-

have developed a simple generic model for an energetic terface, with no leading plate-induced shock wave. After

molecular solid. The parameters entering the function a brief period both of the chemically-driven shocks reach

B., axe chosen so that bonding pair terms are signifi- the same constant velocity of 4.8 km/sec. The steady-

cantly weakened for atomic coordinations greater than state velocity of the chemically-sustained shock is appar-

one. This insures that the lowest-energy state of the sys- ently an intrinsic property of the microscopic system.

tem is a collection of diatomic molecules, and maintains

the molecular nature of the solid at thermal tempera- Despite the microscopic size of the system simulated

tures and low pressures. They have also been chosen to here, the model displays behavior characteristic of macro-
reproduce chemically-sound potential barriers for reac- scopic detonations. First, for the 5 km/sec impact plate

tive collisions. Energy release is incorporated by using velocity a nonreactive compressional wave preceeds the

two different kinds of atoms with different well depths in detonation front. This is similar to real systems where

ti/e morse functions (Eqs. 3 and 4). For heteronuclear di- detonation is initiated behind a leading shock wave.'

atomic molecules, a well of depth of 2 eV is used while for Second, the detonation velocity predicted by our sim-

homonuclear diatomic molecules the well depth is 5 eV. pie model agrees very well with experimental velocities

The initial unreacted system is composed of heteronu- (typically 3-7 km/see). It should be emphasized that

clear diatomic molecules that are bound into a solid by no adjustment of the potential was made to achieve this
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FIG 1. Snapshots from the simulation. The two types of atoms are drawn with different sizes, and lines connect
atoms that are within 1.4 A. The shock is traveling from left to right, a) The system from -20 A to 100 A at 1 ps.
b) The system from 2S0 A to 300 A at 8 ps.

velocity, rather it is a prediction of the model. Further- The atomic-scale structure and dynamics of the chem-
more, this velocity is intrinsic to the material, again in ically-sustained shock is of particular interest, since this
agreement with macroscopic systems. Third, the high- regime in a real detonation is not easily accessible to ex-
density region (apparent in the center of Fig. Ib) exhibits periment. Shown in Fig. 3 is the potential energy per
a steady forward flow of ;4.2 km/sec, and its width in- particle versus position (relative to the shock front) cal-
creases linearly. For long times this region would presum- culated from the simulation. The unreacted material is
ably evolve into a macroscopic following flow, in agree- to the right of the figure and the shock front is at zero.
ment with continuum models.7
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Time (ps) Fig. 3. Potential energy versus position relative to the

front. The front is at 0 A and unreacted material is to

FIG. 2 Velocities for chemically-ri stained shock fronts the right. Expansion into the gas phase begins at zS0
versus time. behind the front.
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aid itand pr imiut mtolecules, in the high-dlensity region J.eroPh.R'.B7(18)(9

the moliecule-s are utudergoing multiple collisions and the
molecular iiuic of thle solid is lost. 5. D. NV_ Brenner, NItt. lPes. Soc. Syttp. Proc. 1-11

(1I9S89) 519.
Several extctisiotls to thle model are possible. First.

(liI% otie ih,ire (if paramecters for the potential energy 6. D. R. Hlardesty, Coiubust. l-1ii 27 (1976) 229.
expression has, been discussed. The functional form is7.FraecnrviwseW.CDvsSlAm25
sufficiently flexible tafetrsoteptnileegy(19S7) 106.
suirface carl be changed so that relationships between re-
action kietics and detonation 8 can be studied. Second, S. F. E'. \Val"ker, J. AppI. Phys. 63 (9~
the microscopic characteristics of the simulation may be
influenced by the reduced dimensionality of the sim- 9. J. Tersoff, Phys. Rev. Lett. 61 (198S) 2879.
lations. Because the form of the potential is not re-
stricted to low dimensions, extension of our model to
three-dimensions is straight forward. Third, although

-- changes iii bonlding arc realistically described by the mod-
el, the system presented iiere is simple compared to real
energetic materials. More complicated forms of the po-
tential energy expression given above have been used to
decribe condensed-phase carbon' and the exchange reac-
tions ll+H2 and 0+02,' and so the further development
of our model to describe real systems appears promis-
ing. Finally, no attempt has been made to include ef-
fects outside of simple nuclear collisions. Although such
effects may ultimately prove important, the results pre-
sented here suggest that, simple collisionall models are a
good starting point for describing many of the properties
of detonating solids.
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